Accelerated dual decomposition for MAP inference
نویسندگان
چکیده
Approximate MAP inference in graphical models is an important and challenging problem for many domains including computer vision, computational biology and natural language understanding. Current state-of-theart approaches employ convex relaxations of these problems as surrogate objectives, but only provide weak running time guarantees. In this paper, we develop an approximate inference algorithm that is both efficient and has strong theoretical guarantees. Specifically, our algorithm is guaranteed to converge to an -accurate solution of the convex relaxation in O ( 1 ) time. We demonstrate our approach on synthetic and real-world problems and show that it outperforms current stateof-the-art techniques.
منابع مشابه
Decomposition Bounds for Marginal MAP
Marginal MAP inference involves making MAP predictions in systems defined with latent variables or missing information. It is significantly more difficult than pure marginalization and MAP tasks, for which a large class of efficient and convergent variational algorithms, such as dual decomposition, exist. In this work, we generalize dual decomposition to a generic power sum inference task, whic...
متن کاملMessage Passing for Soft Constraint Dual Decomposition
Dual decomposition provides the opportunity to build complex, yet tractable, structured prediction models using linear constraints to link together submodels that have available MAP inference routines. However, since some constraints might not hold on every single example, such models can often be improved by relaxing the requirement that these constraints always hold, and instead replacing the...
متن کاملAugmenting Dual Decomposition for MAP Inference
In this paper, we propose combining augmented Lagrangian optimization with the dual decomposition method to obtain a fast algorithm for approximate MAP (maximum a posteriori) inference on factor graphs. We also show how the proposed algorithm can efficiently handle problems with (possibly global) structural constraints. The experimental results reported testify for the state-of-the-art performa...
متن کاملEfficiently Searching for Frustrated Cycles in MAP Inference
Dual decomposition provides a tractable framework for designing algorithms for finding the most probable (MAP) configuration in graphical models. However, for many real-world inference problems, the typical decomposition has a large integrality gap, due to frustrated cycles. One way to tighten the relaxation is to introduce additional constraints that explicitly enforce cycle consistency. Earli...
متن کاملDual Decomposition Inference for Graphical Models over Strings
We investigate dual decomposition for joint MAP inference of many strings. Given an arbitrary graphical model, we decompose it into small acyclic sub-models, whose MAP configurations can be found by finite-state composition and dynamic programming. We force the solutions of these subproblems to agree on overlapping variables, by tuning Lagrange multipliers for an adaptively expanding set of var...
متن کامل